Skip to contents

Importing and processing

Functions to import, extract, and process variants

extract_variants()
Extract variants from mutliple objects
extract_variants_from_maf()
Extract variants from a maf object
extract_variants_from_maf_file()
Extracts variants from a maf file
extract_variants_from_matrix()
Extract variants from matrix or data.frame like objects
extract_variants_from_vcf()
Extracts variants from a VariantAnnotation VCF object
extract_variants_from_vcf_file()
Extracts variants from a vcf file

musica objects

Functions to create and subset musica objects

select_genome()
Helper function to load common human or mouse genomes
create_musica_from_variants()
Creates a musica object from a variant table
create_musica_from_counts()
Creates a musica object from a mutation count table
subset_musica_by_annotation()
Creates a new musica object subsetted to only one value of a sample annotation
subset_musica_by_counts()
Creates a new musica subsetted to only samples with enough variants
subset_variant_by_type()
Subsets a variant table based on Variant Type
subset_variants_by_samples()
Return sample from musica_variant object
variants() `variants<-`()
Retrieve variants from a musica object

Creating mutation count tables

Functions to build and combine mutation count tables

build_standard_table()
Builds count tables using various mutation type schemas
build_custom_table()
Builds a custom table from specified user variants
add_flank_to_variants()
Uses a genome object to find context and add it to the variant table
annotate_replication_strand()
Add replication strand annotation to SBS variants based on bedgraph file
annotate_transcript_strand()
Add transcript strand annotation to SBS variants (defined in genes only)
annotate_variant_length()
Adds an annotation to the input musica's variant table with length of each variant
annotate_variant_type()
Annotate variants with variant type ("SBS", "INS", "DEl", "DBS")
combine_count_tables()
Combines tables into a single table that can be used for discovery/prediction
extract_count_tables()
Extract count tables list from a musica object
tables() `tables<-`()
Retrieve the list of count_tables from a musica object
get_count_table()
Retrieve count_table matrix from count_table object

Sample annotations

Functions to add and manipulate sample annotations

samp_annot() `samp_annot<-`()
Get or set sample annotations from a musica object
sample_names()
Retrieve sample names from a musica object
drop_annotation()
Drops a column from the variant table that the user no longer needs

K value help

Functions to help determine k value

compare_k_vals()
Compare k values
plot_k_comparison()
Plot k comparison

Discovery and prediction

Functions to identify signatures and exposures from mutation count tables

discover_signatures()
Discover mutational signatures
exposures() `exposures<-`()
Retrieve exposures from a result_model, result_collection, or musica object
signatures() `signatures<-`()
Retrieve signatures from a result_model, result_collection, or musica object
name_signatures()
Rename signatures for a model
auto_predict_grid()
Automatic filtering of signatures for exposure prediction gridded across specific annotation
combine_predict_grid()
Combine signatures and exposures of different models. Exposure values are zero for samples in an annotation where that signature was not predicted
generate_result_grid()
Generate result_grid from musica based on annotation and range of k

Accessing result data in musica objects

Functions to add, extract, and access data within the result_list of a musica object

add_result()
Load an external model into a musica object
get_model()
Retrieve model from a musica or result collection object
get_result_list_entry()
Retrieve result_list entry from a musica object
get_modality()
Retrieve a specific modality entry from a musica or result_collection object
result_list() `result_list<-`()
Retrieve result_list from a musica object
hyperparameter() `hyperparameter<-`()
Retrieve hyperparameter from a musica or result_collection object
parameter() `parameter<-`()
Retrieve parameter from a musica or result_collection object
signatures() `signatures<-`()
Retrieve signatures from a result_model, result_collection, or musica object
exposures() `exposures<-`()
Retrieve exposures from a result_model, result_collection, or musica object
num_signatures() `num_signatures<-`()
Retrieve num_signatures from a result_model, result_collection, or musica object
other_parameters() `other_parameters<-`()
Retrieve other_parameters from a result_model, result_collection, or musica object
credible_intervals() `credible_intervals<-`()
Retrieve credible_intervals from a result_model, result_collection, or musica object
metrics() `metrics<-`()
Retrieve metrics from a result_model, result_collection, or musica object
model_id() `model_id<-`()
Retrieve model_id from a result_model, result_collection, or musica object
modality() `modality<-`()
Retrieve modality from a result_model, result_collection, or musica object

Visualization

Functions to identify signatures and exposures from mutation count tables

plot_exposures()
Display sample exposures with bar, box, or violin plots
plot_signatures()
Plots the mutational signatures
plot_umap()
Plot a UMAP from a musica result
plot_cluster()
Visualize clustering results
plot_differential_analysis()
Compare exposures of annotated samples
plot_heatmap()
Plot heatmaps using the exposures matrix
plot_sample_counts()
Plot distribution of sample counts
plot_sample_reconstruction_error()
Plot reconstruction error for a sample
predict_exposure()
Prediction of exposures in new samples using pre-existing signatures

Downstream analysis

Functions to compare the signatures between two results objects

create_umap()
Create a UMAP from a model result
umap() `umap<-`()
Retrieve umap list from a result_model, result_collection, or musica object
cluster_exposure()
Perform clustering analysis from a musica result object
k_select()
Plots for helping decide number of clusters

Signature comparisons

Functions to compare the signatures between two results objects

compare_cosmic_v2()
Compare a result object to COSMIC V2 SBS Signatures (combination whole-exome and whole-genome)
compare_cosmic_v3()
Compare a result object to COSMIC V3 Signatures; Select exome or genome for SBS and only genome for DBS or Indel classes
compare_results()
Compare two result files to find similar signatures
exposure_differential_analysis()
Compare exposures of annotated samples

COSMIC signatures

Result objects that contain COSMIC signatures

cosmic_v2_sigs
COSMIC v2 SBS96 Signatures Result Object
cosmic_v3_dbs_sigs
COSMIC v3 DBS Genome Signatures Result Object
cosmic_v3_indel_sigs
COSMIC v3 Indel Genome Signatures Result Object
cosmic_v3_sbs_sigs
COSMIC v3 SBS96 Genome Signatures Result Object
cosmic_v3_sbs_sigs_exome
COSMIC v3 SBS96 Exome Signatures Result Object

Miscellaneous functions

cosmic_v2_subtype_map()
Input a cancer subtype to return a list of related COSMIC signatures

Data objects and classes

musica_sbs96
musica_sbs96
musica_sbs96_tiny
musica_sbs96_tiny
dbs_musica
dbs_musica
indel_musica
indel_musica
musica
musica
musica_annot
musica_annot
res
res
res_annot
res_annot
rep_range
Replication Timing Data as GRanges Object
musica-class
The primary object that contains variants, count_tables, and samples annotations
count_table-class
Object containing the count table matrices, their names and descriptions that we generated by provided and by user functions. These are used to discover and infer signatures and exposures.
result_collection-class
The Result Collection object that contains modality, input parameters, prior hyperparameters
result_model-class
Object that contains results for a single model
built_tables()
Retrieve the names of count_tables from a musica object
musicatk()
Starts the musicatk interactive Shiny app
rc()
Reverse complement of a string using biostrings
table_selected()
Retrieve table name used for plotting from a result_model object