|
recursiveSplitCell()
|
Recursive cell splitting |
|
recursiveSplitModule()
|
Recursive module splitting |
|
plotRPC()
|
Visualize perplexity differences of a list of celda models |
|
celdaGridSearch()
|
Run Celda in parallel with multiple parameters |
|
plotGridSearchPerplexity()
|
Visualize perplexity of a list of celda models |
|
perplexity()
|
Calculate the perplexity of a celda model |
|
celdaPerplexity()
|
Get perplexity for every model in a celdaList |
|
resamplePerplexity()
|
Calculate and visualize perplexity of all models in a celdaList |
|
selectBestModel()
|
Select best chain within each combination of parameters |
|
resList()
|
Get final celdaModels from a celda model SCE or celdaList
object |
|
subsetCeldaList()
|
Subset celda model from SCE object returned from
celdaGridSearch |
|
appendCeldaList()
|
Append two celdaList objects |
|
celdaClusters() `celdaClusters<-`()
|
Get or set the cell cluster labels from a celda
SingleCellExperiment object or celda model
object. |
|
celdaModules() `celdaModules<-`()
|
Get or set the feature module labels from a celda
SingleCellExperiment object. |
|
recodeClusterY()
|
Recode feature module labels |
|
recodeClusterZ()
|
Recode cell cluster labels |
|
reorderCelda()
|
Reorder cells populations and/or features modules using
hierarchical clustering |
|
featureModuleLookup()
|
Obtain the gene module of a gene of interest |
|
featureModuleTable()
|
Output a feature module table |
|
celda()
|
Celda models |
|
params()
|
Get parameter values provided for celdaModel creation |
|
runParams()
|
Get run parameters from a celda model
SingleCellExperiment or celdaList object |
|
factorizeMatrix()
|
Generate factorized matrices showing each feature's influence on cell
/ gene clustering |
|
bestLogLikelihood()
|
Get the log-likelihood |
|
clusterProbability()
|
Get the conditional probabilities of cell in subpopulations from celda
model |
|
geneSetEnrich()
|
Gene set enrichment |
|
plotHeatmap()
|
Plots heatmap based on Celda model |
|
retrieveFeatureIndex()
|
Retrieve row index for a set of features |
|
normalizeCounts()
|
Normalization of count data |
|
distinctColors()
|
Create a color palette |
|
matrixNames()
|
Get feature, cell and sample names from a celdaModel |
|
logLikelihood()
|
Calculate the Log-likelihood of a celda model |
|
logLikelihoodHistory()
|
Get log-likelihood history |
|
topRank()
|
Identify features with the highest influence on clustering. |
|
sampleLabel() `sampleLabel<-`()
|
Get or set sample labels from a celda
SingleCellExperiment object |