R/getTSNE.R
getTSNE.Rd
Run t-SNE dimensionality reduction method on a SingleCellExperiment Object
getTSNE( inSCE, useAssay = "logcounts", useAltExp = NULL, reducedDimName = "TSNE", nIterations = 1000, perplexity = NULL, run_pca = TRUE, ntop = NULL )
inSCE | Input SingleCellExperiment object. |
---|---|
useAssay | Assay to use for tSNE computation. If |
useAltExp | The subset to use for tSNE computation, usually for the
selected.variable features. Default |
reducedDimName | a name to store the results of the dimension
reductions. Default |
nIterations | maximum iterations. Default |
perplexity | perplexity parameter. Default |
run_pca | run tSNE on PCA components? Default |
ntop | Number of top features to use as a further variable feature
selection. Default |
A SingleCellExperiment object with tSNE computation
updated in reducedDim(inSCE, reducedDimName)
.
data("mouseBrainSubsetSCE") #add a CPM assay assay(mouseBrainSubsetSCE, "cpm") <- apply( assay(mouseBrainSubsetSCE, "counts"), 2, function(x) { x / (sum(x) / 1000000) }) mouseBrainSubsetSCE <- getTSNE(mouseBrainSubsetSCE, useAssay = "cpm", reducedDimName = "TSNE_cpm") reducedDims(mouseBrainSubsetSCE)#> List of length 5 #> names(5): PCA_counts PCA_logcounts TSNE_counts TSNE_logcounts TSNE_cpm