R/doubletFinder_doubletDetection.R
runDoubletFinder.RdUses doubletFinder to determine cells within the dataset suspected to be doublets.
runDoubletFinder(
inSCE,
sample = NULL,
useAssay = "counts",
seed = 12345,
seuratNfeatures = 2000,
seuratPcs = seq(15),
seuratRes = 1.5,
formationRate = 0.075,
nCores = NULL,
verbose = FALSE
)inSCE A SingleCellExperiment object.
Character vector or colData variable name. Indicates which
sample each cell belongs to. Default NULL.
A string specifying which assay in the SCE to use. Default
"counts".
Seed for the random number generator, can be set to NULL.
Default 12345.
Integer. Number of highly variable genes to use.
Default 2000.
Numeric vector. The PCs used in seurat function to
determine number of clusters. Default 1:15.
Numeric vector. The resolution parameter used in Seurat,
which adjusts the number of clusters determined via the algorithm. Default
1.5.
Doublet formation rate used within algorithm. Default
0.075.
Number of cores used for running the function. Default
NULL.
Boolean. Wheter to print messages from Seurat and
DoubletFinder. Default FALSE.
SingleCellExperiment object containing the
doublet_finder_doublet_score variable in colData slot.
data(scExample, package = "singleCellTK")
sce <- subsetSCECols(sce, colData = "type != 'EmptyDroplet'")
sce <- runDoubletFinder(sce)
#> Sat Mar 18 10:30:38 2023 ... Running 'doubletFinder'
#> Centering and scaling data matrix