Run GSVA analysis on a SingleCellExperiment object
runGSVA(
inSCE,
useAssay = "logcounts",
resultNamePrefix = NULL,
geneSetCollectionName,
...
)Input SingleCellExperiment object.
Indicate which assay to use. The default is "logcounts"
Character. Prefix to the name the GSVA results
which will be stored in the reducedDim slot of inSCE. The names of the
output matrix will be resultNamePrefix_Scores. If this parameter is
set to NULL, then "GSVA_geneSetCollectionName_" will be used. Default
NULL.
Character. The name of the gene set collection to use.
Parameters to pass to gsva()
A SingleCellExperiment object with pathway activity
scores from GSVA stored in reducedDim as
GSVA_geneSetCollectionName_Scores.
data(scExample, package = "singleCellTK")
sce <- subsetSCECols(sce, colData = "type != 'EmptyDroplet'")
sce <- scaterlogNormCounts(sce, assayName = "logcounts")
gs1 <- rownames(sce)[seq(10)]
gs2 <- rownames(sce)[seq(11,20)]
gs <- list("geneset1" = gs1, "geneset2" = gs2)
sce <- importGeneSetsFromList(inSCE = sce,geneSetList = gs,
by = "rownames")
sce <- runGSVA(inSCE = sce,
geneSetCollectionName = "GeneSetCollection",
useAssay = "logcounts")
#> Tue Jun 28 22:07:07 2022 ... Running GSVA
#> Estimating GSVA scores for 2 gene sets.
#> Estimating ECDFs with Gaussian kernels
#>
|
| | 0%
|
|=================================== | 50%
|
|======================================================================| 100%
#>