R/scater_PCA.R
scaterPCA.RdPerform PCA on a SingleCellExperiment Object A wrapper to runPCA function to compute principal component analysis (PCA) from a given SingleCellExperiment object.
scaterPCA(
inSCE,
useAssay = "logcounts",
useAltExp = NULL,
reducedDimName = "PCA",
nComponents = 50,
scale = FALSE,
ntop = NULL,
seed = NULL
)Input SingleCellExperiment object.
Assay to use for PCA computation. If useAltExp is
specified, useAssay has to exist in
assays(altExp(inSCE, useAltExp)). Default "logcounts"
The subset to use for PCA computation, usually for the
selected.variable features. Default NULL.
Name to use for the reduced output assay. Default
"PCA".
Number of principal components to obtain from the PCA
computation. Default 50.
Logical scalar, whether to standardize the expression values.
Default FALSE.
Number of top features to use as a further variable feature
selection. Default NULL.
Random seed for reproducibility of PCA results.
A SingleCellExperiment object with PCA computation
updated in reducedDim(inSCE, reducedDimName).
data(scExample, package = "singleCellTK")
sce <- subsetSCECols(sce, colData = "type != 'EmptyDroplet'")
sce <- scaterlogNormCounts(sce, "logcounts")
sce <- scaterPCA(sce, "logcounts")