Perform KMeans clustering on a
SingleCellExperiment object, with
kmeans.
runKMeans(
inSCE,
useReducedDim = "PCA",
clusterName = "KMeans_cluster",
nCenters,
nIter = 10,
nStart = 1,
seed = 12345,
algorithm = c("Hartigan-Wong", "Lloyd", "MacQueen")
)A SingleCellExperiment
object.
A single character, specifying which
low-dimension representation to perform the clustering algorithm on. Default
"PCA".
A single character, specifying the name to store
the cluster label in colData. Default
"scranSNN_cluster".
An integer, the number of centroids (clusters).
An integer, the maximum number of iterations allowed.
Default 10.
An integer, the number of random sets to choose. Default
1.
An integer. The seed for the random number generator.
Default 12345.
A single character. Choose from
"Hartigan-Wong", "Lloyd", "MacQueen". May be
abbreviated. Default "Hartigan-Wong".
The input SingleCellExperimentobject with factor cluster labeling updated in
colData(inSCE)[[clusterName]].
data("mouseBrainSubsetSCE")
mouseBrainSubsetSCE <- runKMeans(mouseBrainSubsetSCE,
useReducedDim = "PCA_logcounts",
nCenters = 2)
#> Thu Mar 31 12:11:28 2022 ... Running 'KMeans clustering'