runSeuratSCTransform Runs the SCTransform function to transform/normalize the input data

runSeuratSCTransform(
  inSCE,
  normAssayName = "SCTCounts",
  useAssay = "counts",
  verbose = TRUE
)

Arguments

inSCE

Input SingleCellExperiment object

normAssayName

Name for the output data assay. Default "SCTCounts".

useAssay

Name for the input data assay. Default "counts".

verbose

Logical value indicating if informative messages should be displayed. Default is TRUE.

Value

Updated SingleCellExperiment object containing the transformed data

Examples

data("mouseBrainSubsetSCE", package = "singleCellTK")
mouseBrainSubsetSCE <- runSeuratSCTransform(mouseBrainSubsetSCE)
#> Running SCTransform on assay: RNA
#> Running SCTransform on layer: counts
#> vst.flavor='v2' set. Using model with fixed slope and excluding poisson genes.
#> `vst.flavor` is set to 'v2' but could not find glmGamPoi installed.
#> Please install the glmGamPoi package for much faster estimation.
#> --------------------------------------------
#> install.packages('BiocManager')
#> BiocManager::install('glmGamPoi')
#> --------------------------------------------
#> Falling back to native (slower) implementation.
#> Variance stabilizing transformation of count matrix of size 2282 by 30
#> Model formula is y ~ log_umi
#> Get Negative Binomial regression parameters per gene
#> Using 2000 genes, 30 cells
#> Found 95 outliers - those will be ignored in fitting/regularization step
#> Second step: Get residuals using fitted parameters for 2282 genes
#> Computing corrected count matrix for 2282 genes
#> Calculating gene attributes
#> Wall clock passed: Time difference of 22.42934 secs
#> Determine variable features
#> Centering data matrix
#> Set default assay to SCTransform