R/scanpyFunctions.R
runScanpyUMAP.RdrunScanpyUMAP Computes UMAP from the given sce object and stores the UMAP computations back into the sce object
runScanpyUMAP(
inSCE,
useAssay = NULL,
useReducedDim = "scanpyPCA",
reducedDimName = "scanpyUMAP",
dims = 40,
minDist = 0.5,
nNeighbors = 10,
spread = 1,
alpha = 1,
gamma = 1,
externalReduction = NULL,
seed = 12345
)(sce) object on which to compute the UMAP
Specify name of assay to use. Default is NULL, so
useReducedDim param will be used instead.
Reduction to use for computing UMAP.
Default is "scanpyPCA".
Name of new reducedDims object containing Scanpy UMAP
Default scanpyUMAP.
Numerical value of how many reduction components to use for UMAP
computation. Default 40.
Sets the "min_dist" parameter to the underlying UMAP
call. Default 0.5.
Sets the "n_neighbors" parameter to the underlying
UMAP call. Default 10.
Sets the "spread" parameter to the underlying UMAP call.
Default 1.
Sets the "alpha" parameter to the underlying UMAP call.
Default 1.
Sets the "gamma" parameter to the underlying UMAP call.
Default 1.
Pass DimReduce object if PCA computed through
other libraries. Default NULL.
Specify numeric value to set as a seed. Default 12345.
Updated sce object with UMAP computations stored
data(scExample, package = "singleCellTK")
if (FALSE) { # \dontrun{
sce <- runScanpyNormalizeData(sce, useAssay = "counts")
sce <- runScanpyFindHVG(sce, useAssay = "scanpyNormData", method = "seurat")
sce <- runScanpyScaleData(sce, useAssay = "scanpyNormData")
sce <- runScanpyPCA(sce, useAssay = "scanpyScaledData")
sce <- runScanpyFindClusters(sce, useReducedDim = "scanpyPCA")
sce <- runScanpyUMAP(sce, useReducedDim = "scanpyPCA")
} # }