R/scanpyFunctions.R
runScanpyTSNE.RdrunScanpyTSNE Computes tSNE from the given sce object and stores the tSNE computations back into the sce object
runScanpyTSNE(
inSCE,
useAssay = NULL,
useReducedDim = "scanpyPCA",
reducedDimName = "scanpyTSNE",
dims = 40,
perplexity = 30,
externalReduction = NULL,
seed = 12345
)(sce) object on which to compute the tSNE
Specify name of assay to use. Default is NULL, so
useReducedDim param will be used instead.
selected reduction method to use for computing tSNE.
Default "scanpyPCA".
Name of new reducedDims object containing Scanpy tSNE
Default scanpyTSNE.
Number of reduction components to use for tSNE computation.
Default 40.
Adjust the perplexity tuneable parameter for the underlying
tSNE call. Default 30.
Pass DimReduc object if PCA computed through
other libraries. Default NULL.
Specify numeric value to set as a seed. Default 12345.
Updated sce object with tSNE computations stored
data(scExample, package = "singleCellTK")
if (FALSE) { # \dontrun{
sce <- runScanpyNormalizeData(sce, useAssay = "counts")
sce <- runScanpyFindHVG(sce, useAssay = "scanpyNormData", method = "seurat")
sce <- runScanpyScaleData(sce, useAssay = "scanpyNormData")
sce <- runScanpyPCA(sce, useAssay = "scanpyScaledData")
sce <- runScanpyFindClusters(sce, useReducedDim = "scanpyPCA")
sce <- runScanpyTSNE(sce, useReducedDim = "scanpyPCA")
} # }